STATISTICS FOR ASTRONOMY 2019–2020 EXAM 4 November 2019 (8:30 - 11:30)

DIRECTIONS: ALLOW 3 HOURS. WRITE YOUR NAME AND STUDENT NUMBER AT THE TOP OF EVERY PAGE OF YOUR SOLUTIONS. Please explain clearly all of the steps that you used to derive a result. Please make certain that your handwriting is readable to someone besides yourself.

1. Answer the following open questions: 7 points/question

- (a) Assume that Jeffrey's prior is used as prior probability, $\operatorname{prob}(x|I)$, for variable x. Use the transformation rule to calculate the probability distribution function of the (natural) logarithm of x, $\operatorname{prob}(\log x|I)$.
- (b) Using Cox' rules, derive the mathematical formula that describes Bayes' theorem and give the name of each term in the formula.
- (c) Describe and compare **parameter estimation** and **model comparison**. What role does the evidence play in each process?
- (d) Describe the **principle of indifference** and give a simple example of its application to determining a probability distribution function.
- (e) Given a continuous uniform distribution function $\operatorname{prob}(x) = \frac{1}{8}$ for $0 \le x \le 8$ and $\operatorname{prob}(x) = 0$ otherwise:
 - i. Calculate $\langle x^3 + 1 \rangle$
 - ii. Calculate $\langle x \rangle$ and $\operatorname{Var}(x)$, the variance of x.
- (f) Explain what the Levenberg-Marquardt algorithm is used for, and describe in words how it works.
- (g) There are several ways to discover exoplanets, including radial velocity searches. In a radial velocity search, an exoplanet is found by measuring the change of the radial velocity of its host star. Such an exoplanet is often characterized by the period P and eccentricity e of its orbit. These aren't the only parameters that need to be inferred: the model of a planet's orbit *also* includes the mean radial velocity of the star V_0 , the velocity amplitude of the orbit K, the "longitude of the periastron" ω , and the fraction of the orbit prior to the start of the data taking at which the periastron occured χ . Given some data **D** (which includes the velocities of the host star measured at some Julian Dates):
 - i. name and describe the process by which you could estimate the **joint probability distribution function** $\operatorname{prob}(P, e|\mathbf{D}, I)$ from the full posterior probability distribution $\operatorname{prob}(V_0, K, P, e, \omega, \chi | \mathbf{D}, I)$ determined from the orbital model; and
 - ii. describe how you would determine the **best estimates** of the period P_0 and eccentricity e_0 of the orbit and the **uncertainties** on these best estimates σ_P and σ_e .
- (h) A particular data set has N values y_i $(0 \le i < N)$ at positions x_i . Each value y_i is independent and its uncertainty follows a Gaussian distribution with the same, but unknown standard deviation. The data set is modelled by a straight line, y = a + bx. Given the data and the fitted values for a and b, write down the equation for the best estimate of the variance of the random uncertainty. You do not have to show a derivation in your answer.
- 2. Open questions involving derivations
 - (a) (16 points) Given a data set $\{x_i : 0 \le i < N\}$ of N values, where each value x_i is independent and drawn from the same normal (Gaussian) distribution with known

(constant) standard deviation σ , use Bayes' theorem to prove that the most probable value μ_0 for the mean of the set is the average of the data. Assume a flat prior for the mean μ .

Figure 1: The Lighthouse problem

(b) (12 points) Consider "the lighthouse problem" (Fig. 1): A lighthouse at sea is at a position α along the coast and a distance β at sea. The shore is lined with photodetectors that record only that a flash has been recorded, but not the angle from which it came. N flashes have been recorded at positions $\{x_i : 0 \le i < N\}$ along the coast, corresponding with azimuth directions $\{\theta_i : 0 \le i < N\}$. The relation between a detected position and azimuth direction is given by $\beta \tan \theta_i = x_i - \alpha$. We know that the lighthouse flashes uniformly in the directions of interest: $\operatorname{prob}(\theta_i | \alpha, \beta, I) = \frac{1}{\pi}$ for $-\frac{\pi}{2} \le \theta_i \le \frac{\pi}{2}$.

Calculate	prob	(x_i)	$ \alpha, \beta $	S, I).
-----------	------	---------	-------------------	------	----

Hint: the table below contains some of the common trigonometric derivatives.

function	derivative	function	derivative
$\sin x$	$\cos x$	$\arcsin x$	$1/\sqrt{1-x^2}$
$\cos x$	$-\sin x$	$\arccos x$	$-1/\sqrt{1-x^2}$
$\tan x$	$\sec^2 x$	$\arctan x$	$1/(1+x^2)$

- (c) (6 points in total) Three questions about the previous result:
 - i. What is the name of the specific distribution derived in question 2(b)?
 - ii. There is a more generic distribution that can also take the form of the function derived in question 2(b). What is its name?
 - iii. When is this generic distribution equal to the specific distribution of question 2(b)?
- 3. True/false questions mark T for a true statement or F for a false statement on your exam paper: 1 point/question
 - (a) You should always use least-squares to fit a straight line to data.
 - (b) A binomial distribution is an appropriate likelihood function for binned data when you know both the expected value and expected variance of an experiment.
 - (c) A χ^2 test is the appropriate test when comparing two continuous distributions or a continuous distribution with a model that predicts a continuous distribution.
 - (d) The distribution of the mean of a set of values drawn from a (one-dimensional) Gaussian distribution with a constant but unknown uncertainty can be calculated from the Student's t-distribution.
 - (e) The central limit theorem says that all probability distributions tend towards a Gaussian distribution in the large-N (many observation) limit.
 - (f) The best estimate of a parameter drawn from a (one-dimensional) Gaussian distribution based on data with unequal uncertainties is the weighted mean of the individual data points.

- (g) A Poisson distribution is an appropriate likelihood function for binned data when you know the expected signal in each bin.
- (h) The mean of the Poisson distribution is equal to square root of its variance.
- (i) The Kolmogorov-Smirnov statistic is the appropriate test when comparing two distributions generated from binned data, for example when asking whether two luminosity functions have been drawn from the same distribution.
- (j) There are three horses and an unknown number x of alpacas in a barn. We know that there are at most 5 alpacas in the barn $(0 \le x \le 5)$ and the probability $\operatorname{prob}(x \mid I)$ is uniformly distributed. An unknown animal escapes. The probability that the animal escaping is an alpaca, $\operatorname{prob}(\operatorname{alpaca} \mid I)$, is given by the formula

prob(alpaca | I) =
$$\frac{1}{6} \sum_{x=0}^{5} \frac{x}{3+x}$$
.